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THE PROBLEM 

Devise a statistical method of estimating the fix 
accuracy of a navigation system. 

RESULTS 

1. A statistical method involving system geometry 
and a simple estimate of the statistical repeatability of 
measurement was developed to determine the circular er- 
ror probable in a navigational fix (not,  however,   accounting 
for fixed errors such as map errors). 

2, The method which was developed is directly ap- 
plicable to the design or evaluation of hyperbolic systems 
and has been successfully used in evaluation studies of the 
present Omega network.    An example of this application is 
presented. 
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INTRODUCTION 

4 

This report describes a statistical method of esti- 
mating the fix accuracy of a navigation system.    The meth- 
od is directly applicable to the design or evaluation of hy- 
perbolic systems such as Omega and Loran.    It consists of 
applying a knowledge of system geometry and a simple es- 
timate of the statistical repeatability of measurement to 
find the circular error probable in a navigational fix.    The 
circular error so determined should be used with caution 
because it does not account for fixed errors such as map 
errors. 

The method described herein has been successfully 
used in evaluation studies of the present Omega network. 
This report contains an illustrative example of this appli- 
cation. 

FIX ACCURACY OF HYPERBOLIC NAVIGATION SYSTEMS 

Theoretical Approach 

In developing a mathematical model for estimating 
the fix accuracy of a navigation system,   it was assumed 
that the basic system geometry would be either known or 
easily computed from known transmitter coordinates -- 
that is,  the crossing angle and divergence of lines of posi- 
tion.    Further necessary assumptions,  which may be made 
from a study of propagation and the equipment specifica- 
tions,   concern propagation effects and random variations 
due to noise in the receiving or transmitting equipment. 
Exclusive of propagation effects the standard deviations of 
measurements in time units on the applicable lines of posi- 
tion and their correlation would be constant throughout the 



field.    In this case. 

A    A 
Standard deviation of line of position 
A (distance units) 

a   = Q„a '   = Standard deviation of line of position 
5 (distance units) 

0 =  Crossing angle of lines of position 
(measured from A to B) 

*AB 

where 

i'       -  Correlation coefficient between line-of- 
position measurements 

Ü.   =  Divergence of line-of-position j 

a     =  Standard deviation of line-of-position J 
(time units) 

would be known. In most practical cases,   propagation 
and p effects are significant to a degree where a',   a'     .   . 

A U Ati 
are not constant but may also vary with position,  in some 
cases diurnally.    Two separate problems may therefore 
exist:    (1) determining a',  a' ,  and p'  „ as functions of 
position, time,  etc.,   ana   (2; computing the median fix 
error ^?(o,  aR,   p,   9).    An additional complication is 
caused by fixed or bias errors giving rise to "offset" dis- 
tributions. 

Distortions, Misadjustments, and Fixed Errors 

Although fixed-equipment errors and propagation- 
associated field distortions unremoved by appropriate 
theory are not considered,  it is important to note how such 
errors affect the applicability of the accuracy estimate. 
While fixed errors should be considered an evaluation of 
any system, their effect at any specified point cannot be 
determined from general considerations.    The restriction 
of solely considering random variables will then yield in- 
formation only on   the median of the distribution function 



of latitude-longitude points which may or may not be the 
median fix error. 

Field distortions and equipment errors are likely to 
be present to a significant degree in any practical system, 
and will result in a mean fix being obtained that is not at 
the true position.    Statistics for "offset" distributions of 
this type have been considered,  but it is uncertain as to 
what meaning can be attached to the results.    To provide a 
definite answer,  the magnitude and direction of the offset 
must be known.    If the offset were known,  it would be re- 
moved.    The following example is typical of the effects of 
fixed errors: 

A system exists for which the mean field distortion 
over the total coverage area is 0.4 mile.    At a given point 
the median repeatability is 0.4 mile.    What is the proba- 
bility of obtaining a fix at the given point within 0.6 mile? 

This question cannot be answered with the informa- 
tion given since the field distortion at the point was never 
specified.    It might be zero,  in which case the probability 
would be about 0.87.    Alternatively,  the field distortion 
might be 3 miles,  in which case the probability would be 
small.    Thus,  if fixed errors are present at any given 
point in a system,  no answer is necessarily correct.    Hence, 
while the presence of offsets as,   say,   estimated by the 
RMS fix error,   is of importance to any system,   it cannot 
be used to estimate accuracy at a prescribed point such as 
one may obtain by the following analysis. 

Circular Error Probable 

The general approach will be to consider a normal 
bivariate distribution specified by the parameters a'      a'   , 
and p'p,  which apply in a skewed,  linear coordinate sys- 
tem with crossing angle 9 and scale factors Q    and n       as 
diagrammed in figure 1. 



Figure   1.       The   coordinate   system. 
\ 

With proper choice of parameters this is the linear 
approximation to any point in a hyperbolic grid.    A rota- 
tion of the B axis of (90° - 0) will be made first to obtain a 
correlated,  normal bivariate distribution in rectangular 
coordinates {x, y).    The {x, y) coordinate system will then 
be rotated through an angle a to obtain stochastically inde- 
pendent variables.    The circular error probable may then 
be computed from the parameters of this distribution.    The 
axis variations are shown in figure 2, 

SKEWED LINEAR 
(HYPERBOLIC) RECTANGULAR UNCORRELATED 

Figure.   2.       Coordinate    transforms. 

The principal task will be to determine the trans- 
forms for the standard deviations and correlation coeffi- 
cient throughout the various coordinate transforms. 



The transformation from the skewed system to the 
linear system is readily accomplished if the scales are 
first normalized by 

a =   Q .a   and b m fib' 
A B (1) 

' 

By definition 

Coordinate y* value of line-of-position A = a 

Note that a is the line-of-position value and not the 
displacement along the coordinate A.    Geometry yields 

x = a ctn Q+bjsin 6 

(2) 

(3) 

Transforms for the means,  standard deviations,   and 
correlation coefficient are now required.    Obviously 

V 

a   m o. 
y      A 

(4) 

(5) 

By definition* 

x 

X 

Hx. 

n 

\sm 0 
a .ctn 6 

n 

X    = 

Eft, T.a. 

x 

sin 0     n 

B 

+ ctn 0- n 

sin 0 
+ A ctn 0 (6) 

* Simple nomenclature has been used without specific refer- 
ence to the algebra of expectations. 



By definition 
Hx. 

x n 
v        — 

- x 

and 

and 

Ha: 
2    _ s.    _   2 

'A n--A   '   aB 

 AB 
n 

*K * 
n 

AB= aA°B 

which may be combined and simplified by using (5) 
and (4) and (6) 

{*t V / Z \—.—- + a . ctn Q I /   7T2 2 \sine *- / (    B" -g cos 6   . o      =  I —-■— +  2AB   J  «■    + 
x n \sin  6 sin  9 -i-^2ctn2ei 

1 
x       sin   Q   \   n 

3 

Zbi     -z)    +2j~osJL   (f^i.J^,  ,  vUi 
sin  6     \   n 

aB cos 9 22 
—27 + 2 g^p^p -   g- + a/ctn89 

Jf        sin^e /? 5>t5 sin^g        i4 (7) 

V 

8 

In a similar manner 

(**&    -- 
\ x v \   n 

JTA 
Qxy   \oB 

cos 9+ p AB, 

x y a  a 
x   y 

1+2
P/ID     —     cos 9 + AB VBI 

cos2 9 

which completes the first phase of transformation. 

(8) 



Transformations to the uncorrelated form are given 
in Hald.      In particular 

a.a     =  a i-p 
xy 

a   +a 2  =  a 3 +a  s 

/     w x y 

0) 

(10) 

/ 

which we wish to solve for a^,  the standard deviation on 
the major axis,  and 0 = O^lsL .    Note that except in the de- 
generate case a    is a unique function of o ~ and conversely. 
In particular 

a  a 

xy (ID 

CL, is given by the solution of the degenerate fourth degree 
equation obtained from (9) and (10) 

a   +a 
jg     y 

y 1+ 
4a S

G 
x 

X 

(I-P      3) 
y        xy 

515  
y 

r (12) 

where two choices of sign have been made by demanding 
that o^ be positive.    The remaining sign is chosen so that 
0< 1. 

No analytic solution has been found for obtaining the 
radius of a circle containing a given probability for a gen- 
eral bivariate distribution. Numerical methods have been 
applied2 such that the function B {C, o^,P) is known for 

^■Hald,   A.,   Statistical Theory,   With Engineering Applica- 
tions, p.   596-599,   Wiley,   1952 

EHarter,   H.   L.,   "Circular Error Probabilities," American 
Statistical Association.    Journal,   v.   55, p. 723-731, 
December 1960 

9 



particular values of the probability P.    Hence,  for the cir- 
cular error probable,   median, P= 0.5,  we may determine 

R  = R{0,a      0.5)   = K{0. 0.b)a                                          (13) 

1.2 

1.1 

RADIUS OF CIRCLE 
R                    a 

<T.. S 
/ 

\ 

c-„- 
^ / 

1.0 

K 0.9 

0.8 

0.7 

WHERE<TwANDa(ARE THE SMALLER AND 
LARGER ORTHOGONAL INDEPENDENT STANDARD 
DEVIATIONS. RESPECTIVELY 

./ 
P -o^x 

S\ X 

/ 

/ 

^ 

 ' 

0.6 
J             0.1             0.2            0.3            0.4            0.5            0.6             0.7            0.8            0.9            1.0 

C 

Figure   3.      Radius    of   a   circle   containing   pro bab iI- 
ities   of   0,5   for   a    bivariate   system    (plotted   from 
re/.    2). 

*Ref.   2,   p.   725-26,   provides an extensive table of P (/T, C) 
from which K{P, C) may be obtained (p.   728).    The function 
K {0, 0. 5) is plotted in figure 3 from this reference. 
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Combining equations 1,   5,   7,   8,   11,   12,   and 13 then 
yields the desired function 

*  (a'A'0'B'ÜA'aB'PAB-eAB) 

} 

Values of Ft may then be calculated for representative 
points in the coverage area of a given system.    From a 
spatial matrix of B values,  contours of constant system 
accuracy can be drawn by interpolation. 

This approach was used to evaluate the present ex- 
perimental Omega system with its triad of stations in 
Hawaii,   Panama,   and New York State.    Daytime system 
operation was approximated by assuming that the standard 
deviations on the lines of position were everywhere con- 
stant and everywhere correlated by the same amount; 
that is,   a   = o   = 4 per cent and p,^ =0.4 (the physical 
justification for these assumptions is discussed in Appen- 
dix A).    The lane divergences,  Q . and 0 ,  and the crossing 
angle were then obtained for various points in the coverage 
area either by direct computation or,   more simply,   from 
general system coverage charts.3    A hand calculator 
(Appendix B) provided a matrix of 7? values.    Graphical in- 
terpolation permitted construction of an accuracy map 
(fig.   4). 

'3Navy Hydrographie Office Chart 17150,   Omega System 
Area Coverage,   November 1961 
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ASSUMPTIONS: STANDARD DEVIATION ON BOTH 
PAIRS = 4% EVERYWHERE 
CORRELATION BETWEEN LINES OF 
POSITION =• +0.4 EVERYWHERE 

r 
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Figure 4. Omega system accuracy, daytime 
conditions. 

SUMMARY 

A r igorous means fo r es t imat ing the accuracy of 
navigation sys tems has been devised, subject to reasonable 
es t imates of p a r a m e t e r s . The method is applicable to 
hyperbolic sys tems such as Loran and Omega. It provides 
a s t ra igh t forward way of computing accuracy contours 
based on c i r cu la r e r r o r probable. 



APPENDIX A: PHYSICAL JUSTIFICATION OF 
CONSTANT a AND P 

/ 

It is obvious that the standard deviation to be expected 
in any practical system will not be constant everywhere. 
Locations will exist outside the coverage area where the 
received signal strength is inadequate for measurement. 
If slave stations are functioning as perfect reflectors, 
measurements near the transmitting antenna should yield 
data of low variance.    However,  if the field strength is 
adequate for reasonable measurements,   greater field 
strength will probably not reduce significantly the variance 
to be observed. 

The complex interaction of components of vlf propa- 
gation yields phase irregularities in the medium field,  so 
that minor ionospheric fluctuations may produce a higher 
variance in measurements than would be obtained under 
similar conditions in the far field.    The higher phase 
gradient in the medium field might be expected to offset to 
some extent conditions in the far field due to the greater 
propagation distance,   to produce a quasi-constant variance 
on phase measurements. 

In any event,  only small spatial deviations in daytime 
variances have been observed.    Experimental data at night 
are as yet unresolved on possible spatial dependence of 
variance.    It may be noted that for an equipment-limited 
system the variance v/ould not be nominally a function of 
position.    Insufficient data have been analyzed to determine 
accurate values of p.     However,  the approximate value is 
indicated and is comparable to Loran A experience.    Logi- 
cally,  the correlation coefficient should vary,   depending in 
an elaborate fashion on a general ionospheric spatial cor- 
relation function (point-to-point) and the length of the com- 
mon path from an observation point to the master station. 
In an equipment-limited system the correlation would tend 
to be spatially independent and assume a constant value 
because of the common receiver channel. 

13 
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BALLISTICS RESEARCH LABORATORY 
U.S.   ARMY ELECTRONIC   PROVING GROUND 
REDSTONE SCIENTIFIC  INFORMATION  CENTER 
U.S.  ARMY ELECTRONICS R&D LABORATORY 

SELRA/SL-ADT SELRA/SL-XC SELRA/SR 
U.S.   ARMY ELECTRONIC R&D  LABORATORY 

EVANS  AREA 
PICATINNY ARSENAL 
U.S.  ARMY RESEARCH OFFICE,   DURHAM 
ELECTRONIC DEVELOPMENT  ACTIVITY 

WHITE SANDS  MISSILE RANGE 
U.S.   ARMY ELECTRONICS RESEARCH UNIT 
U.S.   ARMY AIRBORNE,   ELECTRONICS  & SPECIAL WARFARE  BOARD 
EEGEWOOD ARSENAL 
DEPUTY  CHIEF OF STAFF,   U.S.   AIR  FORCE 

AFRST-EL/CS AFOCC-C/l 
AIR  DEFENSE   COMMAND 

ADOAC-DL ADOOA 
AIR RESEARCH AND DEVELOPMENT  COMMAND 
AIR  UNIVERSITY LIBRARY 
HQ ALASKAN AIR   COMMAND     (2) 
STRATEGIC AIR  COMMAND 
AIR  FORGE  CAMBRIDGE RESE.ARCH  LABORATORY 
AIR   FORGE MISSILE TEST  CENTER 

APMTC  TECH  LIBRARY  -  MU-135 
ROME AIR   DEVELOPMENT CENTER 

RAALD RAUED-1    . 
AIR  PROVING GROUND CENTER,   PGAP1 
1ST STRATEGIC  AEROSPACE  DIVISION 
NORTON AIR   FORGE BASE 
HQ AIR  WEATHER SERVICE 
WRIGHT  AERONAUTICAL SYSTEMS  DIVISION 

ASNVEG ASROO-3     (2) ASAPRD-DIST 
UNIVERSITY  OF MICHIGAN     (1) 

INSTITUTE  OF SCIENCE & TECHNOLOGY     (1) 
UNIVERSITY OF MIAMI 

THE  MARINE  LABORATORY  LIBRARY     (3) 
NEW YORK UNIVERSITY 

DEPT  OF METEOROLOGY &  OCEANOGRAPHY 
INSTITUTE  OF MATHEMATICAL SCIENCES 

COLUMBIA   UNIVERSITY 
HUDSON   LABORATORIES 

LAMONT  GEOLOGICAL OBSERVATORY 
UNIVERSITY OF CALIFORNIA 

SPACE SCIENCES   LABORATORY 
ENGINEERING DEPARTMENT \ 

DARTMOUTH  COLLEGE \ 
THAYER   SCHOOL OF ENGINEERING 

CALIFORNIA   INSTITUTE OF TECHNOLOGY v, 
JET  PROPUISION  LABORATORY 

CORNELL UNIVERSITY 
HARVARD COLLEGE  OBSERVATORY 
HARVARD UNIVERSITY CRUFT   LABORATORY 
GEORGIA   INSTITUTE OF TECHNOLOGY 

CHIEF,   ELECTRONICS DIVISION 
OHIO STATE  UNIVERSITY 

ROCKET  RESEARCH  LABORATORY 
UNIVERSITY OF ALASKA 

GEOPHYSICAL INSTITUTE 
UNIVERSITY  OF COLORADO 

HIGH ALTITUDE OBSERVATORY 
THE  UNIVERSITY OF TEXAS 

ELECTRICAL ENGINEERING  RESEARCH  LABORATORY 
PENNSYLVANIA  STATE UNIVERSITY 

ORDNANCE RESEARCH  LABORATORY 
STANFORD ELECTRONICS  LABORATORIES 
MASSACHUSETTS   INSTITUTE  OF TECHNOLOGY 

DEPT  OF  METEOROLOGY 
PICKARD & BURNS,    INC.,   WALTHAM,   MASS 
SPERRY GYROSCOPE  COMPANY,   GREAT NECK,   N.Y. 
DECO,   INC.,   BOULDER,   COLORADO 

X, 



UNCLASSIFIED 

a 

UNCLASSIFIED 


